Abstract

Structural Biology Cellular processes must respond to change, often by speeding up, slowing down, or stopping altogether. Adenosine triphosphate (ATP) synthases use a transmembrane proton gradient to produce ATP, but this reaction can go in reverse and needs to be halted when conditions are unfavorable. Jinke Gu et al. purified a tetrameric ATP synthase complex from pig hearts that contained the endogenous inhibitory protein IF1. Targeted refinement yielded high-resolution views of the mammalian ATP synthase trapped in two different rotation states by IF1. The findings suggest that ATP synthase tetramers can be inhibited by at least three different mechanisms. Science , this issue p. [1068][1] [1]: /lookup/doi/10.1126/science.aaw4852

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.