Abstract
Ca(2+) homeostasis requires balanced uptake and extrusion, and dysregulation leads to disease. TRPV6 channels are homeostasis regulators, are upregulated in certain cancers, and show an unusual allele-specific evolution in humans. To understand how Ca(2+) uptake can be adapted to changes in metabolic status, we investigate regulation of Ca(2+)-influx by ATP and phosphorylation. We show that ATP binds to TRPV6, reduces whole-cell current increments, and prevents channel rundown with an EC(50) of 380 microM. By using both biochemical binding studies and patch-clamp analyses of wild-type and mutant channels, we have mapped one relevant site for regulation by ATP to residues within the ankyrin repeat domain (ARD) and identify an additional C-terminal binding region. Stimulation of PKC largely prevented the effects of ATP. This regulation requires PKC(betaII) and defined phosphorylation sites within the ARD and the C-terminus. Both regulatory sites act synergistically to constitute a novel mechanism by which ATP stabilizes channel activity and acts as a metabolic switch for Ca(2+) influx. Decreases in ATP concentration or activation of PKC(betaII) disable regulation of the channels by ATP, rendering them more susceptible to inactivation and rundown and preventing Ca(2+) overload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.