Abstract
Whole-terminal capacitance measurements were used to examine membrane retrieval that follows Ca(2+)-triggered exocytosis in single synaptic terminals. Exocytosis was followed by endocytosis only when the internal solution contained a hydrolyzable analog of ATP. ATP-gamma-S, a poorly hydrolyzable ATP analog, did not support endocytosis but instead produced a rapid and profound inhibition of membrane retrieval. Under similar conditions, the GTP analogs GTP-gamma-S and GDP-beta-S failed to block endocytosis, suggesting that ATP is the preferred substrate. Furthermore, the requirement for ATP was independent of the role of ATP in regulating intraterminal Ca(2+), and the role of Ca(2+) in endocytosis was different from that of ATP. The results suggest a direct, acute requirement for ATP hydrolysis in compensatory fast endocytosis in synaptic terminals. Given that the capacitance technique detects changes in membrane surface area, ATP must be required for the membrane fission step or at a step that is a prerequisite for membrane fission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.