Abstract

Recent evidence suggests that ATP is a mediator of central (within the ventral surface of the medulla) and peripheral (within the carotid body) chemosensory transduction. This short review discusses the data obtained in experiments in vivo and in vitro supporting this hypothesis. P2 receptors for ATP are expressed within the ventrolateral medulla as well as by the peripheral chemosensory afferent neurones. Blockade of P2 receptors in the ventrolateral medulla attenuates the CO2-induced increase in respiration while blockade of purinergic signalling impairs carotid body function and diminishes the ventilatory response to hypoxia. Furthermore, ATP is released from the ventral surface of the medulla during hypercapnia and from the carotid body during hypoxia. Finally, exogenous ATP applied on the ventral surface of the medulla evokes rapid increase in phrenic nerve activity, while ATP applied to the carotid body evokes marked excitation of the carotid sinus nerve afferents. We suggest that in the ventrolateral medulla ATP is produced following CO2/H(+)-induced activation of central chemosensory elements (neuronal and/or glial) and acts within the respiratory network to produce physiologically relevant changes in ventilation. In the carotid body, ATP contributes in a significant manner to the transmission of the sensitivity of the carotid body to changes in arterial PO2 and may be considered as a key transmitter released by chemoreceptor cells to activate endings of the sinus nerve afferent fibres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call