Abstract

A fundamental and essential property of nearly all salt-transporting epithelia is the tight parallel coupling between the magnitude of the K-conductive pathway at the basolateral membrane and the activity of the Na,K-dependent ATPase (Na,K-ATPase). In the present study, we demonstrate that the coupling response in the renal proximal tubule is governed, at least in part, through the interaction between ATP-sensitive K channels and Na,K-ATPase-mediated changes in intracellular ATP levels. First, we identified a K-selective channel at the basolateral membrane, which is inhibited by the cytosolic addition of ATP. Second, conventional microelectrode analysis in the isolated perfused proximal straight tubule revealed that these channels are the major determinant of the macroscopic K conductance so that ATP-mediated changes in the open probability of the K channel could alter the extent of K recycling. Indeed, the increase in the macroscopic K conductance upon stimulation of transcellular Na transport and pump activity was found to be paralleled by a decrease in intracellular ATP. Finally, a causal link between parallel Na,K-ATPase-K-channel activity and ATP was established by the finding that intracellular ATP loading uncoupled the response. With our recent observations that similar ATP-sensitive K channels are expressed abundantly in other epithelia, we postulate that ATP may act as a universal coupling modulator of parallel Na,K-ATPase-K-channel activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.