Abstract

Extracellular ATP has been known to have many functions as a fast transmitter, and a co-transmitter, and to have morphogenic and mitogenic activity in neuronal cells. Although it was reported that ATP activates phospholipase D (PLD), the role of PLD versus the ATP function was unclear in neuronal cells. In this study, we investigated the role of PLD on the ATP-induced extracellular signal regulated protein kinase (ERK) activation and mitogenic effect in rat pheochromocytoma PC12 cells. In these cells ATP caused PLD2 activation and ERK phosphorylation, which was dramatically reduced by wild-type PLD2-overexpression but not by lipase-inactive-mutant PLD2-overexpression. The accumulation of phosphatidic acid (PA) by preincubating PC12 cells with propranolol (an inhibitor of PA phosphohydrolase) also decreased the ERK phosphorylation. Inhibition of phosphatases by okadaic acid or pervanadate completely blocked PLD2-dependent ERK dephosphorylation. In addition, ATP-stimulated thymidine incorporation was reduced by the overexpression of wild-type PLD2, but not by the overexpression of lipase-inactive-mutant PLD2. Okadaic acid pretreatment overcame the decrease of ATP-induced thymidine incorporation by PLD2 overexpression. Taken together, we suggest that PLD2 activity might play a negative role in ATP-induced ERK phosphorylation and mitogenic signal possibly through phosphatases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call