Abstract

We demonstrate a successful application of Raman spectroscopy to the problem of lipid ordering with microscopic resolution in different regions of the myelinated nerve fiber. Simultaneous collection of Raman spectra of lipids and carotenoids has enabled us to characterize membrane fluidity and the degree of lipid ordering based on intensity ratios for the 1527/1160 and 2940/2885 cm−1 bands. We show that the intensity profiles of the major Raman bands vary significantly between the three major regions of myelinated nerve fiber: internode, paranode and the node of Ranvier. Mapping Raman peak intensities over these areas suggested that the carotenoid molecules are localized in the myelin membranes of nerve cells. Paranodal membranes were sensitive to extracellular ATP. ATP solutions (7 mM) influenced the 1527/1160 and 2940/2885 cm−1 intensity ratios. Changes in both carotenoid and lipid Raman spectra were in accord and indicated an increase in lipid ordering degree and decrease in membrane fluidity under ATP administration. The collected data provide evidence for the existence of a regulatory purinergic signaling pathway in the peripheral nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.