Abstract

ATP increases intracellular calcium concentration ([Ca(2+)](i)) in supraoptic nucleus (SON) neurons in hypothalamo-neurohypophyseal system explants loaded with the Ca(2+)-sensitive dye, fura 2-AM. Involvement of P2X purinergic receptors (P2XR) in this response was anticipated, because ATP stimulation of vasopressin release from hypothalamo-neurohypophyseal system explants required activation of P2XRs, and activation of P2XRs induced an increase in [Ca(2+)](i) in dissociated SON neurons. However, the ATP-induced increase in [Ca(2+)](i) persisted after removal of Ca(2+) from the perifusate ([Ca(2+)](o)). This suggested involvement of P2Y purinergic receptors (P2YR), because P2YRs induce Ca(2+) release from intracellular stores, whereas P2XRs are Ca(2+)-permeable ion channels. Depletion of [Ca(2+)](i) stores with thapsigargin (TG) prevented the ATP-induced increase in [Ca(2+)](i) in zero, but not in 2 mM [Ca(2+)](o), indicating that both Ca(2+) influx and release of intracellular Ca(2+) contribute to the ATP response. Ca(2+) influx was partially blocked by cadmium, indicating a contribution of voltage-gated Ca(2+) channels. PPADS (pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid), and iso-PPADS, P2XR antagonists, attenuated, but did not abolish, the ATP-induced increase in [Ca(2+)](i). Combined treatment with PPADS or iso-PPADS and TG prevented the response. A cocktail of P2YR agonists consisting of UTP, UDP, and 2-methylthio-ADP increased [Ca(2+)](i) (with or without tetrodotoxin) that was markedly attenuated by TG. 2-Methylthio-ADP alone induced consistent and larger increases in [Ca(2+)](i) than UTP or UDP. MRS2179, a specific P2Y(1)R antagonist, eliminated the response to ATP in zero [Ca(2+)](o). Thus, both P2XR and P2YR participate in the ATP-induced increase in [Ca(2+)](i), and the P2Y(1)R subtype is more prominent than P2Y(2)R, P2Y(4)R, or P2Y(6)R in SON.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call