Abstract

Sound encoding is mediated by Ca(2+) influx-evoked release of glutamate at the ribbon synapse of inner hair cells. Here we studied the role of ATP in this process focusing on Ca(2+) current through CaV1.3 channels and Ca(2+) homeostasis in mouse inner hair cells. Patch-clamp recordings and Ca(2+) imaging demonstrate that hydrolyzable ATP is essential to maintain synaptic Ca(2+) influx in inner hair cells via fueling Ca(2+)-ATPases to avoid an increase in cytosolic [Ca(2+)] and subsequent Ca(2+)/calmodulin-dependent inactivation of CaV1.3 channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.