Abstract

To obtain kinetic information about the pointed ends of actin filaments, experiments were carried out in the presence of gelsolin which blocks all events at the kinetically dominant barbed ends. The 1:2 gelsolin-actin complex retains 1 mol/mol of actin-bound ATP, but it neither hydrolyzes the ATP nor exchanges it with ATP free in solution at a significant rate. On the other hand, the actin filaments with their barbed ends capped with gelsolin hydrolyze ATP relatively rapidly at steady state, apparently as a result of the continued interaction of ATP-G-actin with the pointed ends of the filaments. ATP hydrolysis during spontaneous polymerization of actin in the presence of relatively high concentrations of gelsolin lags behind filament elongation so that filaments consisting of as much as 50% ATP-actin subunits are transiently formed. Probably for this reason, during polymerization the actin monomer concentration transiently reaches a concentration lower than the final steady-state critical concentration of the pointed end. At steady state, however, there is no evidence for an ATP cap at the pointed ends of gelsolin-capped filaments, which differs from the barbed ends which do have an ATP cap in the absence of gelsolin. As there is no reason presently to think that gelsolin has any effect on events at the pointed ends of filaments, the properties of the pointed ends deduced from these experiments with gelsolin-capped filaments are presumably equally applicable to the pointed ends of filaments in which the barbed ends are free.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call