Abstract
Previous work on mitochondrial distribution in axons has shown that approximately half of the presynaptic release sites do not contain mitochondria, raising the question of how the boutons that do not contain mitochondria are supplied with ATP. Here, we develop and apply a mathematical model to study this question. Specifically, we investigate whether diffusive transport of ATP is sufficient to support the exocytic functionality in synaptic boutons which lack mitochondria. Our results demonstrate that the difference in ATP concentration between a bouton containing a mitochondrion and a neighboring bouton lacking a mitochondrion is only approximately 0.4%, which is still 3.75 times larger than the ATP concentration minimally required to support synaptic vesicle release. This work therefore suggests that passive diffusion of ATP is sufficient to maintain the functionality of boutons which do not contain mitochondria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.