Abstract

In the present study, isolated dog and rat hearts were perfused in the Langendorff mode with Krebs bicarbonate buffer in the absence and presence of 10(-5) M oligomycin. The perfusion protocols employed allowed tissue pH to drop during subsequent ischemic incubations essentially as it would in blood-perfused hearts. Tissue pH, ATP, lactate, and mitochondrial respiratory function were measured during the course of subsequent zero-flow ischemic incubations. The adenosinetriphosphatase (ATPase) activities attributable to both mitochondrial and nonmitochondrial ATPases in sonicated heart homogenates and the actomyosin ATPase in isolated cardiac myofibrils were measured in both species. Consistent with earlier results with a different model in which tissue pH was buffered during the ischemic incubations [W. Rouslin, J. L. Erickson, and R. J. Solaro. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H503-H508, 1986], the inhibition of the mitochondrial ATPase in situ by oligomycin markedly slowed both tissue ATP depletion and the loss of mitochondrial function during ischemia in the dog. However, oligomycin had only a very small and transient effect on ATP depletion and mitochondrial function in the rat. This was apparently so because of the fivefold higher rate of glycolytic ATP production as well as the nearly threefold higher total nonmitochondrial ATPase activity of ischemic rat compared with ischemic dog heart. These results suggest that although the inhibition of the mitochondrial ATPase makes a major contribution to ATP conservation in ischemic dog heart, it makes only a very small contribution in rat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call