Abstract

We have recently demonstrated mutually inhibitory ATP-dependent transport of dinitrophenyl-S-glutathione (DNP-SG) and doxorubicin by DNP-SG ATPase purified from human erythrocyte membranes (S. Awasthiet al.,1998a,b). Our previous studies indicate a broad substrate specificity for this transport mechanism, including someP-glycoprotein substrates. Present studies were carried out to determine whether colchicine (COL), a classicalP-glycoprotein substrate, could be transported by purified human erythrocyte DNP-SG ATPase reconstituted in artificial liposomes. We also investigated whether leukotriene C4 (LTC4), an endogenous proinflammatory glutathione-conjugate derived from arachidonic acid, would inhibit colchicine transport. Uptake of COL was compared in proteoliposomes reconstituted with the purified DNP-SG ATPase as well as control liposomes in the presence or absence of ATP. Increased colchicine uptake was observed upon addition of ATP to proteoliposomes, but not control liposomes. Uptake was linear with respect to the amount of vesicle protein used. Sensitivity to osmolarity was consistent with intravesicular COL accumulation. The ATP-dependent colchicine uptake was sensitive to temperature in a manner consistent with a protein-mediated transport process with activation energy of 7.3 kcal/mol. Time-dependent COL uptake by proteoliposomes in the presence of ATP was consistent with a single compartment model with an apparent rate constant of 0.21 ± 0.02 min−1. Kinetic studies indicated a saturable behavior with respect to ATP (Km2.3 ± 0.7 mM) and colchicine (Km4.3 ± 0.2 μM). LTC4 was found to be a competitive inhibitor of COL transport (Kis16.4 μM). Since DNP-SG ATPase is present in many tissues, it may play an important role in determining colchicine accumulation in cells. Increased LTC4 would tend to increase cellular COL accumulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.