Abstract

The generation of individual neurons (neurogenesis) during cortical development occurs in discrete steps that are subtly regulated and orchestrated to ensure normal histogenesis and function of the cortex. Notably, various gene expression programs are known to critically drive many facets of neurogenesis with a high level of specificity during brain development. Typically, precise regulation of gene expression patterns ensures that key events like proliferation and differentiation of neural progenitors, specification of neuronal subtypes, as well as migration and maturation of neurons in the developing cortex occur properly. ATP-dependent chromatin remodeling complexes regulate gene expression through utilization of energy from ATP hydrolysis to reorganize chromatin structure. These chromatin remodeling complexes are characteristically multimeric, with some capable of adopting functionally distinct conformations via subunit reconstitution to perform specific roles in major aspects of cortical neurogenesis. In this review, we highlight the functions of such chromatin remodelers during cortical development. We also bring together various proposed mechanisms by which ATP-dependent chromatin remodelers function individually or in concert, to specifically modulate vital steps in cortical neurogenesis.

Highlights

  • Development of the cortex is marked by coordination of many key molecular and cellular processes that afford proper brain structure and function

  • Neurogenesis in the cortex is a delicately organized developmental event that requires appropriate synchronization of molecular cues leading to proliferation, differentiation, migration, and the ultimate maturation of neurons

  • The developmental tendency of multipotent apical neural progenitor cells (NPCs) to selfrenew or differentiate into more fate-restricted derivatives, is critically regulated by external and inherent cellular programs that are mainly stimulated by neurogenic transcription and signaling factors

Read more

Summary

Introduction

Development of the cortex (corticogenesis) is marked by coordination of many key molecular and cellular processes that afford proper brain structure and function. (Figure 3C) has been reported to be mostly expressed in neural progenitors during early cortical neurogenesis as opposed to its other family member CHD3, which rather provides ATPase function of the NuRD complex at differentiation stages (Nitarska et al, 2016). This consolidates the significance of NuRD complex and/or its associated HDAC1/2 protein functions in finely regulating neural progenitor cell proliferation for proper late-stage differentiative schemes during cortical neurogenesis.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.