Abstract

Neonates born after pregnancies complicated by diabetes or intrauterine growth restriction (IUGR) have increased incidence of hypocalcaemia. Furthermore, IUGR is associated with reduced bone mineralization in infancy and osteoporosis in adult life. We tested the hypothesis that placental calcium transport is altered in these pregnancy complications. Transport of calcium into syncytiotrophoblast basal plasma membrane (BM) vesicles was studied by rapid filtration and protein expression of Ca2+ ATPase by Western blot. In IUGR Ca2+ ATPase activity was increased by 48 per cent (n=13; P< 0.05) whereas protein expression was 15 per cent lower (n=13; P< 0.05) than in controls (n=16). Basal membrane ATP dependent calcium transport was unaltered in gestational diabetes (GDM) but increased by 54 per cent in insulin dependent diabetes (IDDM) compared to controls (P< 0.05;n =14). Diabetes did not affect Ca2+ ATPase expression in BM. We have previously shown that the mid-molecular fragment of parathyroid hormone related peptide (PTHrP midmolecule) stimulates BM Ca2+ ATPase in vitro. PTHrP midmolecule concentrations in umbilical cord plasma were measured using radioimmunoassay. The concentrations in umbilical cord plasma were increased in IUGR, but unaltered in diabetes. In conclusion, placental calcium pump is activated in IUGR and IDDM, which may be secondary to increased foetal calcium demand. We speculate that PTHrP midmolecule may be one mechanism for activating BM Ca2+ ATPase in IUGR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.