Abstract

The Edema Factor (EF), one of the virulence factors of anthrax, is an adenylyl cyclase that promotes the overproduction of cyclic-AMP (cAMP) from ATP, and therefore perturbs cell signaling. Crystallographic structures of EF bound to ATP analogs and reaction products, cyclic-AMP, and Pyrophosphate (PPi), revealed different substrate conformations and catalytic-cation binding modes, one or two cations being observed in the active site. To shed light into the biological significance of these crystallographic structures, the energetics, geometry, and dynamics of the active site are analyzed using molecular dynamics simulations. The ATP conformation observed in the one-metal-ion structure allows stronger interactions with the catalytic ion, and ATP is more restrained than in the structure containing two Mg(2+) ions. Therefore, we propose that the conformation observed in the one-ion crystal structure is a more probable starting point for the reaction. The simulations also suggest that a C3'-endo sugar pucker facilitates nucleophilic attack. Additionally, the two-cation binding mode restrains the mobility of the reaction products, and thus their tendency to dissociate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.