Abstract

Extracellular ATP activates large increases in cell surface area and membrane turnover in rat brown adipocytes (Pappone, P. A., and Lee, S. C. 1996. J. Gen. Physiol. 108:393–404). We used whole-cell patch clamp membrane capacitance measurements of membrane surface area concurrently with fura-2 ratio imaging of intracellular calcium to test whether these purinergic membrane responses are triggered by cytosolic calcium increases or G protein activation. Increasing cytosolic calcium with adrenergic stimulation, calcium ionophore, or calcium-containing pipette solutions did not cause exocytosis. Extracellular ATP increased membrane capacitance in the absence of extracellular calcium with internal calcium strongly buffered to near resting levels. Purinergic stimulation still activated exocytosis and endocytosis in the complete absence of intracellular and extracellular free calcium, but endocytosis predominated. Modulators of G protein function neither triggered nor inhibited the initial ATP-elicited capacitance changes, but GTP γS or cytosolic nucleotide depletion did reduce the cells’ capacity to mount multiple purinergic responses. These results suggest that calcium modulates purinergically-stimulated membrane trafficking in brown adipocytes, but that ATP responses are initiated by some other signal that remains to be identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.