Abstract

Knowledge about plant ATP-binding cassette (ABC) proteins is of great value for sustainable agriculture, economic yield, and the generation of high-quality products, especially under unfavorable growth conditions. We have learned much about ABC proteins in model organisms, notably Arabidopsis thaliana; however, the importance of research dedicated to these transporters extends far beyond Arabidopsis biology. Recent progress in genomic and transcriptomic approaches for nonmodel and noncanonical model plants allows us to look at ABC transporters from a wider perspective and consider chemodiversity and functionally driven adaptation as distinctive mechanisms during their evolution. Here, by considering several representatives from agriculturally important families and recent progress in functional characterization of nonArabidopsis ABC proteins, we aim to bring attention to understanding the evolutionary background, distribution among lineages and possible mechanisms underlying the adaptation of this versatile transport system for plant needs. Increasing the knowledge of ABC proteins in nonmodel plants will facilitate breeding and development of new varieties based on, for example, genetic variations of endogenous genes and/or genome editing, representing an alternative to transgenic approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.