Abstract

The present study elucidated whether roots of temperate forest trees can take up organic phosphorus in the form of ATP. Detached non-mycorrhizal roots of beech (Fagus sylvatica) and gray poplar (Populus x canescens) were exposed under controlled conditions to 33P-ATP and/or 13C/15N labeled ATP in the presence and absence of the acid phosphatase inhibitor MoO42-. Accumulation of the respective label in the roots was used to calculate 33P, 13C and 15N uptake rates in ATP equivalents for comparison reason. The present data shown that a significant part of ATP was cleaved outside the roots before phosphate (Pi) was taken up. Furthermore, nucleotide uptake seems more reasonable after cleavage of at least one Pi unit as ADP, AMP and/or as the nucleoside adenosine. Similar results were obtained when still attached mycorrhizal roots of adult beech trees and their natural regeneration of two forest stands were exposed to ATP in the presence or absence of MoO42-. Cleavage of Pi from ATP by enzymes commonly present in the rhizosphere, such as extracellular acid phosphatases, ecto-apyrase and/or nucleotidases, prior ADP/AMP/adenosine uptake is highly probable but depended on the soil type and the pH of the soil solution. Although uptake of ATP/ADP/AMP cannot be excluded, uptake of the nucleoside adenosine without breakdown into its constituents ribose and adenine is highly evident. Based on the 33P, 13C, and 15N uptake rates calculated as equivalents of ATP the ‘pro and contra’ for the uptake of nucleotides and nucleosides is discussed.Short SummaryRoots take up phosphorus from ATP as Pi after cleavage but might also take up ADP and/or AMP by yet unknown nucleotide transporter(s) because at least the nucleoside adenosine as N source is taken up without cleavage into its constituents ribose and adenine.

Highlights

  • Phosphorus (P) is one of the six macronutrients in all living organism essential for growth and development due to its function in DNA and RNA for inheritance, in free nucleotides for energy transfer, in phospholipids as membrane components as well as in sugar phosphates within carbon metabolism including signaling and regulation processes

  • The present study indicates that poplar and beech roots take up P from nucleotides most probably after cleavage of Pi uptake of ADP and/or AMP cannot be excluded

  • The common assumption for P acquisition by plants, is that plants can take up only Pi (Chiou and Lin, 2011)

Read more

Summary

Introduction

Phosphorus (P) is one of the six macronutrients in all living organism essential for growth and development due to its function in DNA and RNA for inheritance, in free nucleotides for energy transfer, in phospholipids as membrane components as well as in sugar phosphates within carbon metabolism including signaling and regulation processes. P input into the soil by P deposition is extremely low (Peñuelas et al, 2013) and a chemical shift of plant available to unavailable organic bound phosphate (Porg) (Walker and Syers, 1976; Callaway and Nadkarni, 1991; Chadwick et al, 1999; Vitousek et al, 2010; Vincent et al, 2013) further diminishes the plant available P in the soil. P acquisition can be improved by the formation of cluster roots in Proteaceae at P limitation (Lambers et al, 2015a). Mycorrhizal association, evolved by about 90% of all land plants, largely enhances the root surface as well as the accessibility to small diameter soil pores; thereby mycorrhizal hyphae are the most important sites of P acquisition of most plant species (Jansa et al, 2011; Smith et al, 2015). Increased organic acid and acid phosphatase exudation improves Pi solubilization of Al- and Fe-bound P and the cleavage of organic-bound P, respectively (Tran et al, 2010; Chen and Liao, 2016)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call