Abstract

Application of 10 μM ATP for 10 min transiently depressed, then slowly augmented, synaptic transmission in CA1 neurons, leading to long-term potentiation (LTP) (ATP-induced LTP). This ATP-induced LTP was blocked by addition of an N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, D,L-2-amino-5-phosphonovalerate (5 μM). For ATP-induced LTP, delivery of test synaptic inputs once every 20 s to CA1 neurons could be substituted by application of 100 nM NMDA during ATP perfusion. In addition, ATP-induced LTP was blocked by co-application of an ecto-protein kinase inhibitor, K-252b (40 nM), whereas a P2X purinoceptor antagonist, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonic acid 4-sodium (50 μM), or a P2Y purinoceptor antagonist, basilen blue (10 μM), had no effect. These results, therefore, indicate that the mechanisms of ATP-induced LTP involve the modulation of NMDA receptors / Ca2+ channels and the phosphorylation of extracellular domains of synaptic membrane proteins, one of which could be the NMDA receptor / Ca2+ channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.