Abstract
With the advancements of high throughput computational screening procedures, drug repurposing became the privileged framework for drug discovery. The structure-based drug discovery is the widely used method of drug repurposing, consisting of computational screening of compounds and testing them in-vitro. This current method of repurposing leaves room for mechanistic insights into how these screened hits interact with and influence their targets. We addressed this gap in the current study by integrating highly sensitive biophysical methods into existing computational repurposing methods. We also corroborated our computational and biophysical findings on H37Rv for the anti-mycobacterial action of selected drugs in-vitro and ex-vivo conditions. Atosiban and Rutin were screened as highly interacting hits against HemD through multi-stage docking and were cross-validated in biophysical studies. The affinity of these drugs (K ~ 106 M−1) was quantified using fluorescence quenching studies. Differential Scanning Fluorimetry (DSF) and urea-based chemical denaturation studies revealed a destabilizing effect of these drugs on target which was further validated using MD simulations. Conformational rearrangements of secondary structures were established using CD spectra and intrinsic fluorescence. Furthermore, Atosiban and Rutin inhibited M.tb growth in-vitro and ex-vivo while remaining non-toxic to mice peritoneal macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.