Abstract

PurposeAtorvastatin (ATV) is widely used for the treatment of dyslipidemias. Recent evidence has shown that ATV has protection effects against seizures. However, the effect of ATV on certain neurotransmitter and oxidative stress markers associated with seizures had not been reported. Therefore, the present study aimed to evaluate the effects of ATV on oxidative stress markers on whole brain and GABA, glutamate, and dopamine levels in the hippocampus of PTZ-kindled mice. Additionally, effects of ATV on animal models of seizures, anxiety, and depression were also assessed. Materials and methodsSwiss albino mice were given ATV (20, 40, and 80mg/kg/p.o.) in an acute study. On the seventh day, animals were subjected to various neurological and neurobehavioral tests, viz, increasing current electroshock (ICES) test, pentylenetetrazole (PTZ)-induced seizures, Elevated Plus Maze (EPM), and Forced Swim Test (FST). For the development of kindling, a subconvulsant dose of PTZ, i.e., 25mg/kg, i.p., was administered every other day, and ATV in all the three doses was administered daily. Seizure score was continuously monitored until the development of kindling. Thiobarbituric acid reacting species (TBARS), glutathione, dopamine, GABA, and glutamate levels were also assessed in the brain tissues of mice. ResultsThe results showed that in the ICES test, ATV 80mg/kg increased the seizure threshold to hind limb extension (HLE), and a complete protection against HLE was observed when ATV 80mg/kg was combined with a subanticonvulsant dose of phenytoin. Atorvastatin in all the tested doses suppressed the development of kindling, reduced lipid peroxidation, and increased glutathione levels. All doses of ATV maintained the normal levels of glutamate, GABA, and dopamine in kindled mice. ConclusionAtorvastatin possesses anticonvulsant activity against electroconvulsions. It was found to suppress the development of PTZ kindling, presumably altering the redox status and hippocampal levels of dopamine, glutamate, and GABA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.