Abstract

Statins are the most effective drugs used in the reduction of intracellular synthesis of cholesterol. Numerous studies have confirmed that statins reduce the risk of multiple types of cancers. Statin use in cancer patients is associated with reduced cancer-related mortality. Epithelial-to-mesenchymal transition (EMT), a complicated process programmed by multiple genes, is an important mechanism of cancer metastasis. We explored the effect and mechanism of atorvastatin on the EMT process in A549 cells by establishing an EMT model invitro induced by TGF-β1, and evaluated the effects of atorvastatin on the lower signaling pathway of TGF-β1 stimulation. Our results showed that atorvastatin partially inhibited the EMT process, and inhibited cell migration and actin filament remodeling. Transcriptional upregulation of ZEB1 and protein sphingosine kinase1 (SphK1) induced by TGF-β1 was also suppressed. SphK1 plasmid transient transfection strengthened the EMT process induced by TGF-β1 in the presence of atorvastatin. Our experiments confirmed that atorvastatin can partially inhibit the EMT process of non-small cell lung cancer cells induced by TGF-β1 by attenuating the upregulation of SphK1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.