Abstract

It is well known that production of ROS compounds and generation of oxidative stress during diabetes are the most important mechanisms of tissue damage. The aim of this study was to examine the effects of atorvastatin treatment, as an antioxidant, to prevent the brain tissue oxidative stress in streptozotocin-induced diabetic rats. Male Wistar rats were randomly divided into four groups (five rats in each group) as followed: normal, normal treated was orally received 20 mg/kg/day atorvastatin for 30 days, diabetic group was given 40 mg/kg streptozotocin by intravenous injection and diabetic treated similar to normal treated rats. After 30 days of treatment, rats were sacrificed under deep anesthesia to remove the brain. After tissue homogenization, superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) and malondialdehyde (MDA) levels were determined by biochemical methods. In addition to increase blood glucose level in diabetic rats (78%), brain SOD and CAT activities were significantly increased compared with normal rats. Also, diabetes significantly decreased the GSH content of brain tissue by 57%, and increased the brain MDA level by 35%. Finally treatment with atorvastatin significantly decreased the augmented brain CAT activity and the MDA level during diabetes. Based on the finding of this study, diabetes-induced hyperglycemia provoked the production of free radicals in the brain tissue that leading to oxidative stress. Also, treatment with atorvastatin may have prevented from hyperglycemia-induced oxidative stress in the brain of diabetic rat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call