Abstract

Spontaneously hypertensive rats (SHR) are characterized by impaired erectile function and overactivity of the procontractile RhoA/Rho-associated, coiled-coil-containing protein kinase (RhoA/ROCK) pathway, as compared with their normotensive counterpart, Wistar-Kyoto rats. By measuring the intracavernous pressure:mean arterial pressure (ICP:MAP) ratio after electrostimulation of the cavernous nerve, we confirmed these findings and showed that responsiveness to sildenafil (25 mg/kg by oral gavage) also is hampered in SHR. A 2-week treatment with atorvastatin (5 and 30 mg/kg) improved the sildenafil-induced ICP:MAP increase and normalized RhoA and ROCK2 overexpression in SHR corpora cavernosa (CC). Conversely, other genes, neuronal nitric oxide synthase (NOS), endothelial NOS, and phosphodiesterase 5, were unaffected. In human fetal smooth muscle cells derived from CC (hfPSMC), atorvastatin inhibited RhoA membrane translocation and ROCK activity, as well as RhoA-dependent biologic functions like cell migration and cell proliferation. Atorvastatin's effect on migration was rescued in a dose-dependent manner by geranylgeranyl pyrophosphate, suggesting the involvement of RhoA geranylgeranylation. In hfPSMC, atorvastatin decreased the expression of RhoA-dependent genes such as ROCK2, desmin, alpha-smooth muscle actin, SM22alpha, and myocardin. In contrast to atorvastatin, elocalcitol, a vitamin D analog that also interferes with RhoA activation in SHR bladder, was unable to restore penile responsiveness to sildenafil. In conclusion, atorvastatin, but not elocalcitol, ameliorates sildenafil-induced penile erections in SHR, likely by interfering with RhoA/ROCK signaling within the penis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.