Abstract

The development of morphine-induced antinociceptive tolerance limits its therapeutic efficacy in pain management. Atorvastatin, or competitive inhibitor of 3-hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase, is mainstay agent in hypercholesterolemia treatment. Beyond the cholesterol-lowering activity, exploration of neuroprotective properties of this statin indicates its potential benefit in central nervous disorders. The aim of the present study was to assess the effects of atorvastatin in development and expression of morphine-induced analgesic tolerance in male mice and probable involvement of nitric oxide. Chronic and acute treatment with atorvastatin 10 and 20mg/kg, respectively, could alleviate morphine tolerance in development and expression phases. Chronic co-administration of nitric oxide synthase (NOS) inhibitors including L-NAME (non selective NOS inhibitor; 2mg/kg), aminoguanidine (selective inducible NOS inhibitor; 50mg/kg) and 7-NI (selective neuronal NOS inhibitor; 15mg/kg) with atorvastatin blocked the protective effect of atorvastatin in tolerance reversal. Moreover, reversing the atorvastatin effect was also observed in acute simultaneous treatment of L-NAME (5mg/kg) and aminoguanidine (100mg/kg) with atorvastatin. Co-treatment of guanylyl cyclase inhibitor, ODQ (chronic dose: 10mg/kg and acute dose: 20mg/kg) was associated with prevention of atorvastatin anti-tolerance properties. Our results revealed that the atorvastatin modulating role in morphine antinociceptive tolerance is mediated at least in part via nitric oxide in animal pain models of hot plate and tail flick.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call