Abstract

BackgroundThe dengue is a vector borne viral infection in humans. Bite of mosquito infected with a dengue virus transmits the disease. The neutrophils support more to the innate immune response by switching to infected tissues and triggering immunomodulatory mechanisms including the release of proteases and host defence peptides. MethodsCell viability by MTT and trypan blue dye exclusion assay, bright field microscopy for assessment of cell morphology, cytokines measurements by ELISA, estimation of protein by Bradford assay were done. Assessments of matrix metalloproteinase genes mRNA expressions were done using real-time PCR. ResultsIn the present study, we have for the first time unveiled that, NS1 antigen of dengue type-2 serotype, induce and stimulate the neutrophils cells to express high levels of matrix metalloproteases. NS1 exposure of HL-60 cells differentiated to neutrophils affected cell morphology and in 24 h of exposure. We have demonstrated that, the NS1 antigen has induced MMP-2, MMP-14 and MMP-9 expressions in neutrophils in a 24hrs exposure time. NS1 exposure has also further upregulated MMP-1, MMP-13, and MMP-8 expressions in neutrophils in a 24hrs exposure time. Notably, treatment with atorvastatin concentrations downregulated the expression profile of the all matrix metalloprotease significantly. Importantly, NS1 antigen has significantly increased the IL-6, IL-13 release by the HL,60 cells which was reversed by atorvastatin. On the other hand, NS1 exposure enhanced the mRNA expressions of VEGF-A and VEGF-D which was reversed by atorvastatin. However, we found that, NS1 exposure reduced the mRNA expressions profile of VEGF-C, which was reversed by atorvastatin. ConclusionIn conclusion, we report that, neutrophils associated matrix metalloprotease are involved in the pathogenesis of dengue viral disease. VEGF growth factors may also be released by the neutrophils which may subsequently participate in the endothelial dysfunctions leading to dengue shock syndrome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.