Abstract

Mitochondrial dysfunction is a major contributor to neurodegeneration, and causes vulnerability to oxidative stress and the activations of downstream cell death pathways. 3-Hydroxy-3-methyl-glutaryl-CoA reductase inhibitors, statins, were originally developed as cholesterol lowering agents, and have cholesterol-independent anti-excitotoxic and anti-oxidative properties. We investigated whether atorvastatin can prevent the neurodegeneration induced by a mitochondrial toxin, 3-nitropropionic acid (3NP), which inhibits succinate dehydrogenase complex II. Male Lewis rats were administered 3NP (63 mg/kg/day) using osmotic pumps for 5 days to induce striatal degeneration, and were also treated with either atorvastatin (1 or 10 mg/kg/day, orally) or vehicle (control) on five consecutive days. Atorvastatin-treated rats showed fewer neurologic deficits than control animals as measured at day 3-5. Atorvastatin-treated animals showed reduced striatal lesion volumes by Nissl staining, and decreased numbers of TUNEL-positive apoptosis and Fluoro-Jade C-positive degenerating neurons at 5 days. Atorvastatin reduced the numbers of c-Jun-positive and p-c-Jun-positive cells, as well as 3-nitrotyrosin-positive cells. In addition, atorvastatin increased p-extracellular signal-regulated kinase and p-Akt levels, and attenuated the up-regulation of inducible nitric oxide synthase by 3NP. When N(omega)-nitro-l-arginine methyl ester hydrochloride was administered concomitantly with the 3NP infusion, atorvastatin failed to further reduce the striatal lesion volume and c-Jun levels compared to the vehicle treatment. In summary, atorvastatin decreased striatal neurodegeneration induced by 3NP, with attenuating inducible nitric oxide synthase and c-Jun levels as well as activating extracellular signal-regulated kinase and Akt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call