Abstract

Statins are widely used in the treatment of hypercholesterolemia. Studies have demonstrated that statins could maintain vascular contractile function through inhibiting the transformation of vascular smooth muscle cells (VSMCs) from the contractile phenotype to the synthetic phenotype. However, the underlying mechanisms have not been fully elucidated. The effect of atorvastatin on the thoracic aorta of Sprague-Dawley rats cultured in serum-free conditions in vitro was evaluated. Aortic constriction was induced by high potassium, phenylephrine, and CaCl2. The protein expression levels of α1 adrenoceptor; inositol 1,4,5-trisphosphate (IP3) receptor; protein kinase Cδ (PKCδ); stromal interaction molecule 1 (STIM1); high-voltage activated dihydropyridine-sensitive (L type, Cav1.2) channels; and two contractile phenotype marker proteins [α-smooth muscle actin (α-SMA) and myosin (SM-MHC)] were determined by western blotting. Compared with the fresh control, the constriction of rat aorta was impaired after culture in serum-free medium for 24h. The impaired contraction of cultured aortas was mediated by Cav1.2 and store-operated Ca2+ (SOC) channel, which could be improved by atorvastatin at 20μM. The protein expression levels of α1 adrenoceptor, IP3 receptor, PKCδ, STIM1, Cav1.2, α-SMA, and SM-MHC in the aortas cultured in serum-free conditions were decreased significantly. Atorvastatin partially prevented the reduction in the contractility and the downregulation of these proteins in cultured aortas. The transformation of the VSMC phenotype is associated with the vasoconstriction dysfunction of cultured aortas. Atorvastatin may protect vascular function by modulating calcium signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.