Abstract

Despite previous attempts to classify atopic dermatitis (AD) into subtypes (e.g. extrinsic vs. intrinsic), there is a need to better understand specific phenotypes in adulthood. To identify, using machine learning (ML), adult AD phenotypes. We used unsupervised cluster analysis to identify AD phenotypes by analysing different responses to predetermined variables (age of disease onset, severity, itch and skin pain intensity, flare frequency, anatomical location, presence and/or severity of current comorbidities) in adults with AD from the Danish Skin Cohort. The unsupervised cluster analysis resulted in five clusters where AD severity most clearly differed. We classified them as 'mild', 'mild-to-moderate', 'moderate', 'severe' and 'very severe'. The severity of multiple predetermined patient-reported outcomes was positively associated with AD, including an increased number of flare-ups and increased flare-up duration and disease severity. However, an increased severity of rhinitis and mental health burden was also found for the mild-to-moderate phenotype. ML confirmed the use of disease severity for the categorization of phenotypes, and our cluster analysis provided novel detailed information about how flare patterns and duration are associated with AD disease severity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.