Abstract

Hearing relies on the delicate arrangement of mechanoreceptor neurones and an acoustomechanical interface. The concerted action of these neural and non-neural components is essential to audition, raising the question of whether they also develop in a concerted way. Drosophila hears with its antennae. A specialized antennal joint allows the distal part of the antenna to vibrate in response to sound and, thus, to serve as the sound receiver. This receiver's vibration is transduced by a chordotonal sense organ (CHO) that is closely associated with the joint. Here, we report that atonal (ato), the proneural gene for CHOs, is required for the formation of this antennal joint. Biophysical measurements in hemi- and homozygous ato(1) mutant flies show that, in addition to eliminating the auditory CHO, loss of ato function makes the antennal receiver insensitive to sound, impairing its auditory function. Anatomically, the cause for this mechanical effect resides in the deprivation of mobile exoskeletal joint structures. Hence, ato, the homologue of mouse Math1, is required for the formation of both the auditory CHO and joint, providing a genetic link between the very neural and exoskeletal components that together transform fly antennae into ears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.