Abstract

AbstractLet L be an a-implicative semilattice. We obtain a characterization of those elements which cover a. This gives a characterization of atoms in pseudocomplemented semilattices, and leads to various results on primes and irreducibles in semilattices. As an application, we prove that in a complete, atomistic lattice L, the following are equivalent (i) L is implicative (ii) L is (2, ∞) meet distributive (iii) each element of L is a meet of primes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.