Abstract

We compute the ground state energy of atoms and quantum dots with a large number N of electrons. Both systems are described by a non-relativistic Hamiltonian of electrons in a d-dimensional space. The electrons interact via the Coulomb potential. In the case of atoms (d=3), the electrons are attracted by the nucleus, via the Coulomb potential. In the case of quantum dots (d=2), the electrons are confined by an external potential, whose shape can be varied. We show that the dominant terms of the ground state energy are those given by a semiclassical Hartree-exchange energy, whose N to infinity limit corresponds to Thomas-Fermi theory. This semiclassical Hartree-exchange theory creates oscillations in the ground state energy as a function of N. These oscillations reflect the dynamics of a classical particle moving in the presence of the Thomas-Fermi potential. The dynamics is regular for atoms and some dots, but in general in the case of dots, the motion contains a chaotic component. We compute the correlation effects. They appear at the order N ln N for atoms, in agreement with available data. For dots, they appear at the order N.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.