Abstract
Summary form only given. Ensuring the correctness of multithreaded programs is difficult, due to the potential for unexpected interactions between concurrent threads. We focus on the fundamental noninterference property of atomicity and present a dynamic analysis for detecting atomicity violations. This analysis combines ideas from both Lipton 's theory of reduction and earlier dynamic race detectors such as Eraser. Experimental results demonstrate that this dynamic atomicity analysis is effective for detecting errors due to unintended interactions between threads. In addition, the majority of methods in our benchmarks are atomic, supporting our hypothesis that atomicity is a standard methodology in multithreaded programming.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.