Abstract

The spray atomization and combustion characteristics of canola methyl ester (CME) biofuel are compared to those of petroleum based No. 2 diesel fuel in this paper. The spray flame was contained in an optically accessible combustor which was operated at atmospheric pressure with a co-flow of heated air. Fuel was delivered through a swirl-type air-blast atomizer with an injector orifice diameter of 300 μm. A two-component phase Doppler particle analyzer was used to measure the spray droplet size, axial velocity, and radial velocity distributions. Radial and axial distributions of NO, CO, CO 2 and O 2 concentrations were also obtained. Axial and radial distributions of flame temperature were recorded with a Pt–Pt/13%Rh (type R) thermocouple. The volumetric flow rates of fuel, atomization air and co-flow air were kept constant for both fuels. The droplet Sauter mean diameter (SMD) at the nozzle exit for CME biofuel spray was smaller than that of the No. 2 diesel fuel spray, implying faster vaporization rates for the former. The flame temperature decreased more rapidly for the CME biofuel spray flame than for the No. 2 diesel fuel spray flame in both axial and radial directions. CME biofuel spray flames produced lower in-flame NO and CO peak concentrations than No. 2 diesel fuel spray flames.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.