Abstract

We present a detailed study of solid state dewetting choosing epitaxial bismuth films on silicon as a model system. Exploiting both diffraction and imaging methods, we determine atomistic parameters like unit cell coverage, lattice spacings and gradients thereof through the analysis of x-ray diffraction crystal truncation rods. We use a Johnson-Mehl-Avrami-Kolmogorov model to describe the kinetics of the dewetting process on an atomic scale. The role of a vertical strain gradient, that impedes solid state dewetting, is revealed and a detailed model for the atomic jump diffusion during dewetting is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.