Abstract

The in-plane combination of graphene (G) and hexagonal-boron nitride (h-BN) leads to lateral h-BN/G heterostructures, which are promising candidates for novel two-dimensional electronics. The quality of the interface between G and h-BN domains is crucial for the device performance. By comprehensive first-principles calculations, we explore the heteroepitaxial growth of graphene along the edge of an h-BN domain on a Cu(111) surface and compare it with that on a Cu(111) terrace. We find that the graphene nucleation site strongly depends on the chemical potential of carbon and predeposited h-BN coverage. Under the suitable carbon concentration and coverage of h-BN, graphene mainly grows along the h-BN edge, leading to a sharp and straight h-BN/G interface. Our results provide insightful knowledge to synthesize well-defined h-BN/G and other lateral heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.