Abstract

Fracture and damage ascribed to the intrinsic brittleness of amorphous oxide glasses are crucial problems for the daily use of glass products. Because the latest developments in glass and glass-ceramics technologies have further broadened their applications, the safety issues become increasingly important. Computational modeling and simulation are now indispensable in the design and analysis of glass quality and safety. This review, therefore, provides an overview of the state-of-the-art fracture modeling/simulation techniques ranging from atomistic scale to continuum scale. In addition to the fundamental theories, typical and recent studies using a variety of continuum methods are introduced. This review also covers the application examples of classical molecular dynamics (CMD) simulations and reactive CMD simulations to investigate the fracture and damage evolutions in glass and glass-ceramics. Advanced multiscale modeling techniques that bridge atomistic and continuum method are also introduced for modeling amorphous materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call