Abstract

The atomic structure of crystal defects such as dislocations, grain or phase boundaries, control these defects’ properties: their mobility, ability to cross-slip, or solute segregation. These crystal defects can be conveniently studied by atomistic simulations and one then needs to transfer relevant information at the upper scale to model microstructures containing a large number of defects, e.g., a polycrystal. Here, we propose an atomistic to continuum mechanics crossover method that (i) represents the atomic structure of dislocations cores by an appropriate Nye dislocation density tensor field and (ii), captures quantitatively the short and long range mechanical fields of defects. For (i), we propose a modified and improved interpolation method based on the original work by Hartley and Mishin. For (ii), we use a field dislocation mechanics framework that rigorously calculates/evaluates the mechanical fields associated with any Nye dislocation density distribution. The transfer method relies on molecular static calculations using two energetic models — ab-initio for screw dislocation core simulations in tungsten, and EAM potential for low and large angle grain boundaries in copper. Our findings demonstrate the effectiveness of the proposed approach in reconstructing the Burgers vector, and continuous strain and rotation fields. The framework is further applied to analyze the elastic interactions between extrinsic edge dislocations and a low angle grain boundary in copper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.