Abstract

In the present paper, I attempt to theoretically describe, analyze and compare the structural and optical properties in the core/multi-shell nanocrystal structure of a cadmium selenide (CdSe) core surrounded by zinc selenide (ZnSe) inner and zinc sulphide (ZnS) external growth shells. The atomistic tight-binding model (TB) and a configuration interaction method (CI) are implemented to calculate the single-particle spectra, optical band gaps, ground-state wave function overlaps, ground-state oscillation strengths, ground-state coulomb energies, ground-state exchange energies and Stokes shift as a function of ZnS external growth shell thicknesses. I underline that these computations are principally sensitive with the ZnS external growth shell thickness. The reduction of the optical band gaps, overlaps of ground electron-hole wave function, electron-hole interactions and Stokes shift is realized with the increasing ZnS external growth shell thickness. The improvement of the optical intensities is mainly achieved by including the ZnS exterior growth shell encapsulation. Importantly, the optical band gaps based on atomistic tight-binding theory are in a good agreement with the experiment. Finally, this emphasizes that the external passivation shell can now be engineered in a defined way, thus leading to manipulate the natural behaviors of nanodevices based on the scrutinized core/multi-shell nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.