Abstract

We computationally study the resolution limits for three-dimensional coherent x-ray diffractive imaging of heavy, nonbiological systems using Ar clusters as a prototype. We treat electronic and nuclear dynamics on an equal footing and remove the frozen-lattice approximation often used in electronic damage studies. We explore the achievable resolution as a function of pulse parameters (fluence level, pulse duration, and photon energy) and particle size. The contribution of combined lattice and electron dynamics is not negligible even for 2 fs pulses, and the Compton scattering is less deleterious than in biological systems for atomic-scale imaging. Although free-electron scattering represents a significant background, we find that recovery of the original structure is in principle possible with 3 °A resolution for particles of 11 nm diameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call