Abstract
Atomistic simulations have been used to study the deformation mechanisms of nanocrystalline pure Al and Al-Mg binary alloys. Voronoi tessellation was used to fully create a three-dimensional polycrystalline model with a grain size of 10 nm, while hybrid Monte Carlo and molecular dynamic simulations were used to achieve both mechanical and chemical equilibriums in nanocrystalline Al-5 at.%Mg. The results of tensile tests show an improved strength, including the yield strength and ultimate strength, through doping 5 at.%Mg into nanocrystalline aluminum. The results of atomic structures clearly reveal the multiple strengthening mechanisms related to doping in Al-Mg alloys. At the early deformation stage, up to an applied strain of 0.2, the strengthening mechanism of the dopants exhibits as dopant pinning grain boundary (GB) migration. However, at the late deformation stage, which is close to failure of nanocrystalline materials, dopants can prohibit the initiation of intergranular cracks and also impede propagation of existing cracks along the GBs, thus improving the flow stress of Al-Mg alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.