Abstract
One of the most interesting unsolved problems in fracture mechanics is the precise understanding of the energy-dissipation mechanisms that occur as a crack advances. In most cases, this energy-release rate is many times the surface energy created. One of the main reasons for this difference is the fact that plastic deformation can occur in the crack-tip region as dislocations nucleate and are emitted from the crack tip. Experimental studies provide little insight into the precise mechanisms for this process because they cannot reach the atomistic scale. For example, a crack that may seem experimentally sharp, and therefore indicative of brittle fracture, may not be sharp at the atomic level. Continuum mechanics has a similar limitation, since the assumptions of elasticity theory usually break down in the crack-tip region. Atomistic simulation studies provide researchers an opportunity to obtain precise atomic configurations in the crack-tip region under various loading conditions and to observe the basic energy-dissipation mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.