Abstract

In the present work, nanoindentation on the basal surface of a crystalline molybdenum disulfide (MoS2) thin film is investigated by molecular statics (MS) calculations. A previously parameterized interatomic potential combining the reactive empirical bond-order and Lennard-Jones potentials is implemented into the LAMMPS molecular simulation package and refined for improved prediction of the mechanical properties of MoS2 at athermal conditions. Nanoindentation simulations are performed using three indenter sizes with specific focus on the incipient plastic deformation event within the MoS2single crystal. MS calculations show that a local phase transformation occurs beneath the indenter at plastic yield without the presence of broken Mo–S bonds. The structural characteristics of the phase transformation are captured using a slip vector analysis. The nanoindentation simulations provide insight into the mechanical response of MoS2 during contact deformation characteristic of both synthesis and application for better design of MoS2 nanoparticle lubricants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.