Abstract
Tritium retention and microstructural modifications due to helium accumulation are two of the main concerns regarding plasma-facing materials in fusion applications. Crystal defects in tungsten (W), such as grain boundaries and dislocations, can serve as traps or channels for diffusion of hydrogen (H) and helium (He), and, as such, can affect the transport of these species. In this work, we study the diffusion of hydrogen, helium and self-interstitial atoms (SIA) inside screw and edge dislocations in W using molecular dynamics simulations. Stable sites for interstitials in dislocations are identified using a free-volume analysis and energy barriers for diffusion are predicted using a combination of the nudged elastic band (NEB) method and finite temperature molecular dynamics simulations. Overall, the simulations predict higher energetic barriers for He and H diffusion in both screw and edge dislocations compared to the bulk. However, the diffusion mechanism in both dislocations are shown to differ: simulations predict that interstitials are constrained to move in short channels inside the edge dislocation core so that long-range diffusion along the dislocation line happens only with the motion of the dislocation. In contrast, 1D diffusion of the interstitial along the dislocation core, independent of dislocation motion, is observed for screw dislocations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.