Abstract

The mechanical properties of Mg-Al alloys are greatly influenced by the complex intermetallic phase Mg17Al12, which is the most dominant precipitate found in this alloy system. The interaction of basal edge and 30∘ dislocations with Mg17Al12 precipitates is studied by molecular dynamics and statics simulations, varying the inter-precipitate spacing (L), and size (D), shape and orientation of the precipitates. The critical resolved shear stress τc to pass an array of precipitates follows the usual ln((1/D+1/L)−1) proportionality. In all cases but the smallest precipitate, the dislocations pass the obstacles by depositing dislocation segments in the disordered interphase boundary rather than shearing the precipitate or leaving Orowan loops in the matrix around the precipitate. An absorbed dislocation increases the stress necessary for a second dislocation to pass the precipitate also by absorbing dislocation segments into the boundary. Replacing the precipitate with a void of identical size and shape decreases the critical passing stress and work hardening contribution while an artificially impenetrable Mg17Al12 precipitate increases both. These insights will help improve mesoscale models of hardening by incoherent particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.