Abstract

Molecular-dynamics method was used to study γ surfaces for the (001), (010), and (100) planes of cementite. Displacement vectors corresponding to stable stacking faults have been determined. The energy of these stacking faults has been calculated by the molecular-dynamics and ab initio methods. The energy of unstable stacking faults, which characterizes the tendency of a material to plastic relaxation, has been estimated. The reactions of the splitting of perfect dislocations have been suggested; the possibility of the propagation of stacking faults in the planes under consideration is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.