Abstract

AbstractThe structure, stability and thermally-activated motion of interstitial and vacancy clusters in Fe and Cu have been studied using atomic scale computer simulation. All studied interstitial clusters and perfect interstitial loops (PILs) in Fe are mobile whereas their mobility in Cu can be suppressed at large sizes (bigger than 49–61 self-interstitials depending on the temperature) due to dissociation. A comparative study of relaxed configurations has shown that the structure of small perfect dislocation loops of vacancy and self-interstitial nature is very similar. Molecular dynamics simulation has demonstrated that small perfect vacancy loops (PVLs) in Fe consisting of more than 37 vacancies are stable over a wide temperature range and produce atomic displacements by a thermally-activated movement in the direction of the Burgers vector. The mechanism is qualitatively similar to that of SIA clusters studied earlier. Motion of vacancy loops in Cu does not occur because they transform into sessile configurations similar to stacking fault tetrahedra. These results point to the possibly important contribution of vacancy loop mobility to the difference in radiation damage between bcc and fcc metals, and between fcc metals with different stacking fault energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.