Abstract

Atomistic simulation has been performed to systematically investigate the Mn-site doping of h-YMnO3 (hexagonal yttrium manganese oxide). It is found that tetravalent dopants are the most energetically favorable for incorporation into a crystal lattice. For divalent dopants, hole compensation is the more likely charge compensation mechanism, whereas for dopants with mixed valence, the divalent state is the energetically preferred form. Structural and local polarization changes caused by Mn-site doping are also investigated. The tilting angle of the MnO5 trigonal bipyramid is suppressed for all of the dopants investigated, with the reduction dependent on the dopant ion radius, while the influence on buckling is closely related to the valence of the dopants. Our results reveal that both electrostatic and size effects play important roles in the ferroelectric polarization of h-YMnO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.