Abstract

We present two dimensional molecular dynamics simulations of grain boundary migration using the half-loop bicrystal geometry in the experiments of Shvindlerman et al. We examine the dependence of steady-state grain boundary migration rate on grain boundary curvature by varying the half-loop width at constant temperature. The results confirm the classical result derived by absolute reaction rate theory that grain boundary velocity is proportional to the curvature. We then measure the grain boundary migration rate for fixed half-loop width at varying temperatures. Analysis of this data establishes an Arrhenius relation between the grain boundary mobility and temperature, allowing us to extract the activation energy for grain boundary migration. Since grain boundaries have an excess volume, curvature driven grain boundary migration increases the density of the system during the simulations. In simulations performed at constant pressure, this leads to vacancy generation during the boundary migration, making the whole migration process jerky.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.